In all geologic time, the responsibilities are on our generation ... including you ...

§ 4.5: Producing High Temperature Refractories

Refractories are materials needed for handling high temperature liquids, gases and solids, e.g., for industrial processing. Applications include solar furnaces, casting molds for molten materials, heat exchangers, and aerobraking heat shields.

Industrial refractory needs can be satisfied by sintered calcia (CaO), silica (SiO2), magnesia (MgO), alumina (Al2O3) and titania (TiO2), with the desired porosity. Of course, these stable materials are commonly used on Earth for the same purposes, due to their great resistance to heat, oxidation (they are already fully oxidized), corrosion and abrasion. Minerals such as olivine [(MgFe)2SiO4] and anorthite (CaAl2Si2O8) are also useful for making refractory bricks and ceramics. Some refractories and their ceramics have low expansion due to heat and are attractive for space environments where a wide range of temperatures are experienced.

Production of ceramics and refractories in space from lunar materials has been discussed in a number of papers, including Poisl and Fabes, as well as Shirley et al., and Mackenzie and Claridge, among others.

One particular application of refractories is in transportation for returning cargoes to low Earth orbit by aerobraking with the upper atmosphere, and perhaps slowing down some incoming asteroid payloads by aerobraking. Of course, this is the method used by spacecraft to return to Earth, including the reusable Space Shuttle. The Space Shuttle's tiles are made from silica (SiO2) (with a thin borosilicate coating to provide a smooth, aerodynamic surface for a smooth landing).

Aerobraking tiles are produced from amorphous silica fibers which are pressed and sintered, with the resulting tile having as much as 93% porosity (i.e., very lightweight) and low thermal expansion, low thermal conductivity, and good thermal shock properties. This process can be readily performed in space when we can produce silica of the required purity.

Cheaper materials besides silica fibers can be used. Silica fibers are used on the Space Shuttle in order to keep its weight down, thereby increasing cargo weight capacity. For resources already in space, we don't have this economic need. A number of other materials can be used for heat shields, e.g., alumina (Al2O3) or anorthite (CaAl2Si2O8).

The lack of hydrogen and water in lunar material could reduce the difficulty in making these materials, and improve the quality, as compared to making them on Earth.

A technical analysis of making aerobrake shields from lunar materials is given by Poisl and Fabes.






spacesettlement.com > Manufacturing, Industry > Refractories

Please provide quick feedback on this page. It is encouraging to just know people read anything on this site and care enough to give some quick feedback.

Which one are you?:
Robot
Human

How many stars would you give this page?
1 = very bad
2 = less than expected but okay
3 = average or no opinion
4 = good
5 = excellent

What is your age range?
Under 20
20-29
30-59
over 60

If you choose to submit feedback, then I wish to thank you in advance. After you click on Submit, the page will jump to the top.


Reasons to do something yourself:

  • It will help save life on our special planet -- be part of the solution in your generation.
  • It will create and secure a better future for your children and grandchildren.
  • It could be an interesting, cool, and a fun adventure for your life!

You can join us and volunteer to help out,

... or ...

If you're short on time, you can just donate by seeing our donate page, or contact Mark Prado via his personal website at www.mark-prado.com.

If you really much prefer to send by cryptocurrency, then you can donate into a wallet of any of our cryptocoins, though this is our least preferable way to receive donations ..., so please donate this way only if it's really much more convenient or feasible for you. The wallets are included in my cryptocoin critiques opinion page.

... or ...

Suggest this website to other people and organizations.

NOTICE:

PERMANENT needs a PHP / MySQL (actually, MariaDB) programmer. Are you a PHP / MySQL programmer interested in getting into space development as a career, or already working in space development? Or do you know somebody else who might be interested?

This is a volunteer, unpaid role at this point in time. A limited paid role would be considered on a tight budget, such as for at least bug fixing with some minor improvements, and/or a security review of our code before it goes online publicly. If you or one of your friends or associates may be interested, please send an email to spaceprogrammer at ... of course this domain.



To get updates on PERMANENT (occasional, not frequent), get on our mailing list.

For general or specific e-mail regarding PERMANENT, please use our Feedback page.

Leave information about yourself in our people, companies, and organizations database.

If you are interested in hiring our expertise, anywhere in the world, please contact us.
We have people in the USA and Thailand, and can travel or consult by internet.
You can call anytime, 24/7, at +66-8-1135-7977

Text by Mark Prado, Copyright © 1983-2024, All Rights Reserved.
Many website artistic design elements by Sam Fraser, Copyright © 1999-2024, All Rights Reserved.

Except where specifically stated otherwise,
Copyright © 1983-2024 by Mark Evan Prado, All Rights Reserved

Source: https://www.spacesettlement.com

PERMANENT logo
P rojects to E mploy R esources of the M oon and A steroids N ear E arth in the N ear T erm

PERMANENT logo
P rojects to E mploy R esources of the M oon
and A steroids N ear E arth
in the N ear T erm



This website has a lot of text content, so here are some suggestions on how to navigate and also recognize pages you're seen already vs. still unseen pages in the SiteMap.

There are 2 ways to browse this website:

  • A menu floats on the top left (unless you have JavaScript disabled, in which case you must use our SiteMap).

    or

  • The SiteMap page.

The pulldown menu and the SiteMap are the same tree of pages and links. The pulldown menu offers + and - for expand and collapse sections/subsections/sub-subsections... of the tree, sometimes multiple levels, whereas the SiteMap has everything expanded with no + or - expand and collapse options so the SiteMap is much longer, compared to the pulldown menu if not fully expanded. You may just choose which of the two formats you prefer at a particular time.

The SiteMap colors links red which you have already visited, vs. normal blue for still unseen. It is convenient to browse the SiteMap in one tab or window, and opening pages in other tabs/windows (Ctrl-click or right-click), such as browsing the whole SiteMap to skip pages you've already seen and to choose to open pages you haven't read yet.

The pulldown menu doesn't change the color of seen pages, unfortunately, unlike the SiteMap. However, using the pulldown menu, you can quickly browse the list of sections and other pages without leaving the page you're on. The SiteMap is a separate page of its own.