Search Add a publication

ID No : 1007   Edit
Title: Liquid Oxygen/Liquid Methane Test Results of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility
Summary / Review : "Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to ~122,000 ft (~37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane." (Author's abstract)
Author(s) : Melcher, John C., IV; Allred, Jennifer K., [Johnson Space Center; White Sands Test Facility]
Publication Date: 2009
Category(s) : Transportation / Lunar launch and landers
Web URL : http://hdl.handle.net/2060/20090026004
If this link is broken, please Add Comment below.
We try to keep author contact details, and a backup copy in our offline library.
PERMANENT code(s) : L,U
(Explanation of the
last 3 rows above)
In the row above, there are up to 4 possibilities:
U = URL you can click on to get a copy instantly from another source on the internet, or request it from that source
D = Downloadable from PERMANENT (such as because no other URL known...)
L = LAN copy, PERMANENT has a digital copy but not downloadable from our website
P = Paper copy in the PERMANENT office
Typically, only 0 to 3 methods are available.
NTRS : 20090026004
Other Ref # : JSC-CN-18473
Submitted by : MEP
Comments: Please add your thoughtful Comments to this paper after reading it.
All comments are reviewed and approved before being posted publicly below.
If you wish to submit a private comment to the curator, instead of a public comment, just write "Private" at the start of your comment.
Corrections and suggested additions to our records are appreciated.
  Add Comment 
Add Comment     Green is public,     Pink is private.
Screen Name: Either real name or anonymous alias are OK.
Real Name and
optional info:

Please provide at least your real name, and optionally additional information.
Email Address: We keep your email address private.
Date - Time Sorry, just click on the field, then on the popup calendar click "Now" then "Done".
Your Comment: (if private to curator, then just start with "Private:" or something like that.)