Search Add a publication

ID No : 969   Edit
Title: Lunar Exploration Architecture Level Key Drivers and Sensitivities
Summary / Review : "Strategic level analysis of the integrated behavior of lunar transportation and lunar surface systems architecture options is performed to assess the benefit, viability, affordability, and robustness of system design choices. This analysis employs both deterministic and probabilistic modeling techniques so that the extent of potential future uncertainties associated with each option are properly characterized. The results of these analyses are summarized in a predefined set of high-level Figures of Merit (FOMs) so as to provide senior NASA Constellation Program (CxP) and Exploration Systems Mission Directorate (ESMD) management with pertinent information to better inform strategic level decision making. The strategic level exploration architecture model is designed to perform analysis at as high a level as possible but still capture those details that have major impacts on system performance. The strategic analysis methodology focuses on integrated performance, affordability, and risk analysis, and captures the linkages and feedbacks between these three areas. Each of these results leads into the determination of the high-level FOMs. This strategic level analysis methodology has been previously applied to Space Shuttle and International Space Station assessments and is now being applied to the development of the Constellation Program point-of-departure lunar architecture. This paper provides an overview of the strategic analysis methodology and the lunar exploration architecture analyses to date. In studying these analysis results, the strategic analysis team has identified and characterized key drivers affecting the integrated architecture behavior. These key drivers include inclusion of a cargo lander, mission rate, mission location, fixed-versus- variable costs/return on investment, and the requirement for probabilistic analysis. Results of sensitivity analysis performed on lunar exploration architecture scenarios are also presented." (Author's abstract)
Author(s) : Goodliff, Kandyce; Cirillo, William; Earle, Kevin; Reeves, J. D.; Shyface, Hilary; Andraschko, Mark; Merrill, R. Gabe; Stromgren, Chel; Cirillo, Christopher, [Langley Research Center]
Publication Date: 2009
Category(s) : Transportation / Lunar launch and landers
Web URL : http://hdl.handle.net/2060/20090012433
If this link is broken, please Add Comment below.
We try to keep author contact details, and a backup copy in our offline library.
PERMANENT code(s) : L,U
(Explanation of the
last 3 rows above)
In the row above, there are up to 4 possibilities:
U = URL you can click on to get a copy instantly from another source on the internet, or request it from that source
D = Downloadable from PERMANENT (such as because no other URL known...)
L = LAN copy, PERMANENT has a digital copy but not downloadable from our website
P = Paper copy in the PERMANENT office
Typically, only 0 to 3 methods are available.
NTRS : 20090012433
Other Ref # : LF99-8252, IEEEAC 1310, Version 3
Submitted by : MEP
Comments: Please add your thoughtful Comments to this paper after reading it.
All comments are reviewed and approved before being posted publicly below.
If you wish to submit a private comment to the curator, instead of a public comment, just write "Private" at the start of your comment.
Corrections and suggested additions to our records are appreciated.
  Add Comment 
Add Comment     Green is public,     Pink is private.
Screen Name: Either real name or anonymous alias are OK.
Real Name and
optional info:

Please provide at least your real name, and optionally additional information.
Email Address: We keep your email address private.
Date - Time Sorry, just click on the field, then on the popup calendar click "Now" then "Done".
Your Comment: (if private to curator, then just start with "Private:" or something like that.)