In all geologic time, the responsibilities are on our generation ... including you ...

Lunar gravity assists for asteroids

Some asteroid enthusiasts humorously see the Moon mainly as an object to offer gravity assists, not to mine the Moon.

A "gravity assist" entails using a fly-by with the Moon to divert the trajectory of a payload and to impart delta-v, saving large amounts of fuel. Almost all NASA probes to other planets have depended on gravity assists, e.g., passing by the Moon and the Earth one or more times on their way out, and sometimes other planets as well for the purpose of gravity assists. For example, Voyager more than doubled its speed when it passed Jupiter.

One or more lunar gravity assists, sometimes in concert with an Earth gravity assist, will be used to:

  1. deflect incoming asteroid cargos into a high Earth orbit (or towards another gravity assist), and
  2. to brake the asteroid.

A single lunar gravity assist is illustrated conceptually below.

The maximum braking the Moon can provide is about 2.2 km/sec, using a "double lunar gravity assist", whereby the asteroid passes by the Moon coming in, then past the Earth, then past the Moon again going back out. This would divert the asteroid by almost 90 degrees from its original path, and capture it into a highly elliptical Earth orbit. Subsequent gravity assists would insert it into a more circular orbit around Earth after which it would perform final small thrusting maneuvers to achieve its desired destination orbit.

Many asteroids require a delta-v of much less than 2.2 km/sec, and require only a single lunar gravity assist (not an Earth gravity assist) to be captured, and optionally additional lunar gravity assists to divert the asteroid into a more circular orbit.

Gravity assists improve the economics of retrieving asteroid payloads, as well as outbound missions, and greatly broadens the number of attractive asteroids.

(In this game of "orbital billiards", we are tapping a gravitational energy source as asteroid payloads exchange orbital momentum with the Moon and the Earth -- the asteroid slows down while the Moon speeds up. Because asteroids are so small compared to the Earth and Moon, the effects on the Moon and Earth are so small as to be immeasurable. It would take millions of captured asteroids to cause any detectable changes in the Moon's or Earth's orbits. It's like measuring the effects of mosquitoes hitting the Empire State Building -- significant to the mosquito, but not to the building.)

We probably would not want to bring a complete asteroid in, but instead a series of small cargo containers which are more easily maneuvered and pose no significant threat to Earth. Trajectories are something we know very precisely, well in advance, and there's no need to get too close to Earth. The abovementioned 2.265 km/sec gravity assist maneuver was based on approaching no closer than several thousand miles (kilometers) of Earth's surface in order to allay such concerns. (Some people have proposed using the Earth's atmosphere for "aerobraking", but that's not at all what we are talking about here. We won't ever need to alert any emergency rendezvous team for pure gravity assist maneuvers.) One would expect that a quick response rendezvous team would be set up to protect Earth in the long run against both man-made objects and naturally occurring asteroids and big rocks that pass by Earth. Already, military and civilian telescopes have detected big rocks and sizeable asteroids passing very close to Earth, including skimming the upper atmosphere. If any of these naturally occurring objects had hit Earth, it would cause a natural disaster, possibly to the entire planet, not a man-made disaster. Man-made capabilities can prevent natural planetary damage. > Transportation > Theoretical > Lunar Gravity Assist for Asteroids

Please provide quick feedback on this page. It is encouraging to just know people read anything on this site and care enough to give some quick feedback.

Which one are you?:

How many stars would you give this page?
1 = very bad
2 = less than expected but okay
3 = average or no opinion
4 = good
5 = excellent

What is your age range?
Under 20
over 60

If you choose to submit feedback, then I wish to thank you in advance. After you click on Submit, the page will jump to the top.

Reasons to do something yourself:

  • It will help save life on our special planet -- be part of the solution in your generation.
  • It will create and secure a better future for your children and grandchildren.
  • It could be an interesting, cool, and a fun adventure for your life!

You can join us and volunteer to help out,

... or ...

If you're short on time, you can just donate by seeing our donate page, or contact Mark Prado via his personal website at

If you really much prefer to send by cryptocurrency, then you can donate into a wallet of any of our cryptocoins, though this is our least preferable way to receive donations ..., so please donate this way only if it's really much more convenient or feasible for you. The wallets are included in my cryptocoin critiques opinion page.

... or ...

Suggest this website to other people and organizations.


PERMANENT needs a PHP / MySQL (actually, MariaDB) programmer. Are you a PHP / MySQL programmer interested in getting into space development as a career, or already working in space development? Or do you know somebody else who might be interested?

This is a volunteer, unpaid role at this point in time. A limited paid role would be considered on a tight budget, such as for at least bug fixing with some minor improvements, and/or a security review of our code before it goes online publicly. If you or one of your friends or associates may be interested, please send an email to spaceprogrammer at ... of course this domain.

To get updates on PERMANENT (occasional, not frequent), get on our mailing list.

For general or specific e-mail regarding PERMANENT, please use our Feedback page.

Leave information about yourself in our people, companies, and organizations database.

If you are interested in hiring our expertise, anywhere in the world, please contact us.
We have people in the USA and Thailand, and can travel or consult by internet.
You can call anytime, 24/7, at +66-8-1135-7977

Text by Mark Prado, Copyright © 1983-2024, All Rights Reserved.
Many website artistic design elements by Sam Fraser, Copyright © 1999-2024, All Rights Reserved.

Except where specifically stated otherwise,
Copyright © 1983-2024 by Mark Evan Prado, All Rights Reserved


P rojects to E mploy R esources of the M oon and A steroids N ear E arth in the N ear T erm

P rojects to E mploy R esources of the M oon
and A steroids N ear E arth
in the N ear T erm

This website has a lot of text content, so here are some suggestions on how to navigate and also recognize pages you're seen already vs. still unseen pages in the SiteMap.

There are 2 ways to browse this website:

  • A menu floats on the top left (unless you have JavaScript disabled, in which case you must use our SiteMap).


  • The SiteMap page.

The pulldown menu and the SiteMap are the same tree of pages and links. The pulldown menu offers + and - for expand and collapse sections/subsections/sub-subsections... of the tree, sometimes multiple levels, whereas the SiteMap has everything expanded with no + or - expand and collapse options so the SiteMap is much longer, compared to the pulldown menu if not fully expanded. You may just choose which of the two formats you prefer at a particular time.

The SiteMap colors links red which you have already visited, vs. normal blue for still unseen. It is convenient to browse the SiteMap in one tab or window, and opening pages in other tabs/windows (Ctrl-click or right-click), such as browsing the whole SiteMap to skip pages you've already seen and to choose to open pages you haven't read yet.

The pulldown menu doesn't change the color of seen pages, unfortunately, unlike the SiteMap. However, using the pulldown menu, you can quickly browse the list of sections and other pages without leaving the page you're on. The SiteMap is a separate page of its own.