In all geologic time, the responsibilities are on our generation ... including you ...

3.4.1 Aerobraking

In space transportation, there is no such thing as a "free downhill" because there's no friction in space. It takes as much fuel to come down (and insert into a circular orbit) as it takes to go up.

An exception could be if we use the Earth's atmosphere for frictional braking. We do this when spacecraft like the Shuttle return to Earth. The Apollo program entrusted their heat shields and calculations for high speed encounters with Earth's atmosphere. We've just never done this to brake an object in a transfer from one orbit to a lower orbit, whereby the object would pass through Earth's atmosphere briefly one or more times in order to reduce fuel requirements in its orbital transfer.

This would require an "aerobraking vehicle", which would basically be a heat shield with the payload held safely within.

The heat shield would need to be able to withstand high temperatures and pressures. Unlike the reusable Shuttle, such heat shields may be "ablative", i.e., allow material to be blown off of them, this material taking away much of the heat as well.

Heat shields for aerobraking may be expendable. We may not want to re-use it because that would require we spend fuel to raise it up to another high orbit. The idea is to save fuel this way, not spend it. However, fuel from space resources may become cheap enough to warrant re-use. Or, the heat shield could be used to export products to Earth's surface.

Indeed, one of the applications of aerobraking is sending fuel to low orbit to raise things up to higher orbits.

Aerobraking shields can be made from asteroidal and/or lunar materials, as covered in the section on manufacturing refractory materials.

The main issue of aerobraking is safety. We would have to make it very safe so that there is practically no chance we will accidentally cause anything to hit a populated area on Earth, just like we have done for Apollo and every manned spacecraft over the past 35+ years. Objects must be small so that they are relatively harmless if there is a failure. Since the Pacific Ocean takes up almost a hemisphere, objects may aerobrake above that ocean rather than above land masses. A rapid deployment rocket must be available in case an orbital insertion rocket fails after a pass through the atmosphere, or if there's a bad error on the way towards Earth. Objects can have self-destruct mechanisms if there is any failure at any time, e.g., before entry, after the first pass, etc. For example, the payload can set to self-destruct automatically unless systems are operational and they get the command to not self-destruct. There can be multiple self-destruct mechanisms. > Transportation > Midterm > Aerobraking

Please provide quick feedback on this page. It is encouraging to just know people read anything on this site and care enough to give some quick feedback.

Which one are you?:

How many stars would you give this page?
1 = very bad
2 = less than expected but okay
3 = average or no opinion
4 = good
5 = excellent

What is your age range?
Under 20
over 60

If you choose to submit feedback, then I wish to thank you in advance. After you click on Submit, the page will jump to the top.

Reasons to do something yourself:

  • It will help save life on our special planet -- be part of the solution in your generation.
  • It will create and secure a better future for your children and grandchildren.
  • It could be an interesting, cool, and a fun adventure for your life!

You can join us and volunteer to help out,

... or ...

If you're short on time, you can just donate by seeing our donate page, or contact Mark Prado via his personal website at

If you really much prefer to send by cryptocurrency, then you can donate into a wallet of any of our cryptocoins, though this is our least preferable way to receive donations ..., so please donate this way only if it's really much more convenient or feasible for you. The wallets are included in my cryptocoin critiques opinion page.

... or ...

Suggest this website to other people and organizations.


PERMANENT needs a PHP / MySQL (actually, MariaDB) programmer. Are you a PHP / MySQL programmer interested in getting into space development as a career, or already working in space development? Or do you know somebody else who might be interested?

This is a volunteer, unpaid role at this point in time. A limited paid role would be considered on a tight budget, such as for at least bug fixing with some minor improvements, and/or a security review of our code before it goes online publicly. If you or one of your friends or associates may be interested, please send an email to spaceprogrammer at ... of course this domain.

To get updates on PERMANENT (occasional, not frequent), get on our mailing list.

For general or specific e-mail regarding PERMANENT, please use our Feedback page.

Leave information about yourself in our people, companies, and organizations database.

If you are interested in hiring our expertise, anywhere in the world, please contact us.
We have people in the USA and Thailand, and can travel or consult by internet.
You can call anytime, 24/7, at +66-8-1135-7977

Text by Mark Prado, Copyright © 1983-2024, All Rights Reserved.
Many website artistic design elements by Sam Fraser, Copyright © 1999-2024, All Rights Reserved.

Except where specifically stated otherwise,
Copyright © 1983-2024 by Mark Evan Prado, All Rights Reserved


P rojects to E mploy R esources of the M oon and A steroids N ear E arth in the N ear T erm

P rojects to E mploy R esources of the M oon
and A steroids N ear E arth
in the N ear T erm

This website has a lot of text content, so here are some suggestions on how to navigate and also recognize pages you're seen already vs. still unseen pages in the SiteMap.

There are 2 ways to browse this website:

  • A menu floats on the top left (unless you have JavaScript disabled, in which case you must use our SiteMap).


  • The SiteMap page.

The pulldown menu and the SiteMap are the same tree of pages and links. The pulldown menu offers + and - for expand and collapse sections/subsections/sub-subsections... of the tree, sometimes multiple levels, whereas the SiteMap has everything expanded with no + or - expand and collapse options so the SiteMap is much longer, compared to the pulldown menu if not fully expanded. You may just choose which of the two formats you prefer at a particular time.

The SiteMap colors links red which you have already visited, vs. normal blue for still unseen. It is convenient to browse the SiteMap in one tab or window, and opening pages in other tabs/windows (Ctrl-click or right-click), such as browsing the whole SiteMap to skip pages you've already seen and to choose to open pages you haven't read yet.

The pulldown menu doesn't change the color of seen pages, unfortunately, unlike the SiteMap. However, using the pulldown menu, you can quickly browse the list of sections and other pages without leaving the page you're on. The SiteMap is a separate page of its own.